Soft Shadows, Curved Surfaces
and Perceptual Sensitivity:
Advanced Methods for Improving
Realism in Real-time Rendering

Weiche Schatten, gekr mmte Fl chen

und Wahrnehmungsemp ndlichkeit:
Moderne Methoden zur Realismus-
steigerung beim Echtzeitrendern

Der Technischen Fakult t der
Universit t Erlangen-N rnberg
zur Erlangung des Grades

DOKTOR INGENIEUR

vorgelegt von

Michael Schwarz

Erlangen 2009

Als Dissertation genehmigt von
der Technischen Fakult t der
Universit t Erlangen-N rnberg

Tag der Einreichung: 30.04.2009
Tag der Promotion: 27.07.2009

Dekan: Prof. Dr.-Ing. Johannes Huber

Berichterstatter: Prof. Dr.-Ing. Marc Stamminger
Prof. Dr. techn. Michael Wimmer

Copyright = 2009 by Michael Schwarz
All rights reserved.

Abstract

Computer-generated images have become ubiquitous and an important tool in numerous do-
mains. Rendering them at real-time rates allows the interactive exploration of virtual scenes,
which is essential for many applications like computer games. anks to the wide-spread avail-
ability and rapid evolution of graphics hardware o ering huge computational power, such a
real-time image synthesis is possible for increasingly complex scenes and e ects. Concurrently,
demands on visual quality are continuously rising, and the desire for realistic appearance is in-
tensifying. However, achieving this goal poses many challenges and comprises a wide range of
aspects.

is thesis addresses three signi cant of these issues and provides new solutions which en-
hance the realism attainable at real-time rates with graphics hardware. First, so shadows are
covered. eseo ervaluable visual cuesand signi cantly contribute to realism. We introduce a
novel approach for determining light occlusion, which, in particular, correctly handles overlap-
ping shadow casters. Moreover, methods for concentrating computational e orts on relevant
light blockers, new advanced occluder approximations, and a scheme for smoothly varying
shadow quality to locally adapt rendering costs are presented.

e second focus is on curved surface primitives, whose adoption allows maintaining visual
smoothness, as encountered with real-world shapes, irrespective of view and zoom. We provide
a comprehensive overview and describe several new contributions for rendering such surfaces
via adaptive tessellation. Most notably, a novel, exible framework is proposed which enables
e ciently running all involved major steps entirely on graphics hardware.

Visual perception and its limited sensitivity are at the center of the third topic treated. ey
play an important role because images are eventually produced to be viewed by a human. We
present a graphics-hardware-based approach for rapidly computing a perceptually motivated
image metric which predicts tolerable pixel-value deviations, enabling its on-the- y use during
rendering, for instance to exploit scene-level visual masking for guiding level-of-detail selec-
tion. Moreover, a novel perceptually-motivated predictor for the perceptibility of visual pop-
ping artifacts is introduced and evaluated in a user study.

Kurzzusammenfassung

Computergenerierte Bilder sind in zahlreichen Gebieten allgegenw rtig und ein wichtiges In-
strument geworden. Ihre Erzeugung in Echtzeitgeschwindigkeit erm glicht die interaktive Er-
kundung virtueller Szenen, was wesentlich f r eine Vielzahl von Anwendungen, wie etwa Com-
puterspiele, ist. Dank der weiten Verf gbarkeit und schnellen Entwicklung von gro e Rechen-
leistung bietender Gra khardware ist solch eine Echtzeitbildsynthese f r zunehmend komple-
xere Szenen und E ekte m glich. Gleichzeitig steigen die Anspr che an die visuelle Qualit t
kontinuierlich und der Wunsch nach einem realistischen Aussehen wird st rker. Das Erreichen
dieses Ziels wir jedoch viele Herausforderungen auf und umfa t eine Vielfalt an Gesichts-
punkten.

Diese Arbeit behandelt drei bedeutende dieser Probleme und bietet neue L sungen, die
den in Echtzeit mittels Gra khardware erzielbaren Realismus erh hen. Als erstes werden wei-
che Schatten behandelt. Diese liefern wichtige visuelle Hinweise und tragen wesentlich zu ei-
ner realistischen Erscheinung bei. Ein neuartiger Ansatz f r die Bestimmung der Lichtver-
deckung wird vorgestellt, der insbesondere mit Schatten werfenden Objekten, die sich ber-
lappen, korrekt verf hrt. Des weiteren werden Methoden zur Fokussierung der Rechenbem -
hungen auf relevante das Licht versperrende Objekte, neue fortgeschrittene Approximationen
f r verdeckende Objekte sowie ein Verfahren, das die Schattenqualit t zur lokalen Anpassung
der Renderkosten visuell stufenlos variiert, pr sentiert.

Der zweite Schwerpunkt liegt auf gekr mmten Fl chenprimitiven, deren Einsatzeserm g-
licht, sichtbare Glattheit, wie sie bei Formen der realen Welt anzutre enist, unabh ngigvon der
konkreten Ansicht aufrechtzuerhalten. Ein umfangreicher berblick wird gegeben und meh-
rere neue Beitr ge zum Rendern solcher FI chen mittels adaptiver Tesselierung beschrieben.
Insbesondere wird ein neuartiges, exibles Rahmenwerk vorgestellt, das diee ziente Ausf h-
rung aller wichtigen dazugeh rigen Schritte vollst ndig auf der Gra khardware erm glicht.

Die visuelle Wahrnehmung und ihre eingeschr nkte Emp ndlichkeit stehen im Zentrum
des dritten betrachteten emengebiets. Sie spielen eine wichtige Rolle, da Bilder letztendlich
erzeugt werden, um durch einen Menschen betrachtet zu werden. Ein die Gra khardware ver-
wendender Ansatz zur schnellen Berechnung einer wahrnehmungsbasierten Metrik, die tole-
rierbare Pixelwertabweichungen vorhersagt, wird vorgestellt. Dieser erm glicht ihren iegen-
den Einsatz w hrend der Bildsynthese, beispielsweise um szenenweite visuelle Maskierungsef-
fekte bei der Detailstufenauswahl auszunutzen. Dar ber hinaus wird ein neuartiges wahrneh-
mungsbasiertes Verfahren f r die Vorhersage der Wahrnehmbarkeit von visuellen Popping-
Artefakten eingef hrt und mittels einer Nutzerstudie evaluiert.

Vii

Contents

Abstract

1 Introduction

11
1.2

Contributions
Outline

2 Real-time rendering

2.1
2.2
2.3
2.4
2.5

Rendering pipeline
Graphicshardware
GPGPUandcompute APIS e
Level-of-detail approaches L
Kindsofrealism

| Real-time soft shadows

3 Overview of real-time so shadows

3.1
3.2

3.3

4 So
4.1
42

4.3

SO shadows
Real-timeapproaches
3.2.1 Image-basedapproaches
3.2.2 Geometry-based approaches,
3.23 Hybridapproaches
3.24 Approaches for low-frequency environmental lights
325 DISCUSSION
Quasi-interactive approaches for accurate so shadows
shadow mapping with occluder backprojection

Basicapproach
Visibility determination with occlusion bitmasks
421 Occlusionbitmasks
422 Advanced applications
423 DISCUSSION o o
Acceleration structures L
431 Multi-scaleshadowmap
432 HybridYshadowmap
433 DISCUSSION o

w N

|
= O 00 N o1 Ol

[N

CONTENTS

4.4 Occluder approximations 45
441 Microquads 46
4.4.2 Approximate occlusion bitmasks for microquads 49
443 MICrOtriS 49
444 Exact occlusion bitmasks for microquads and microtris 49
445 DISCUSSION 52
4.5 Coarser occluder approximations 55
45.1 Microrects as a generalization of micropatches 56
45.2 Construction of microrects at coarser levels 57
453 Discussionof microrects 59
454 Biasingproblems. 61
4.6 Visibility interpolation for multisample support 62
4.7 Resultsandconclusion 64
Level of quality for so shadows 69
51 Possibleapproaches 69
51.1 Multiple algorithms producing di erentquality 70
512 GeometricoccluderLOD 70
5.1.3 Sparsevisibilitysampling 71
5.1.4 Intrinsic algorithm parameters 72
5.2 Smooth quality variation for so shadowmapping. 72
521 Approach 74
522 DISCUSSION o v e 75
523 Results. 76
Il Rendering of curved surfaces
Fundamentals of curved surfaces 81
6.1 B@ziersurfaces 82
6.1.1 B@zierpatches 83
6.1.2 B@ziertriangles. 85
6.1.3 PNtriangles 86
6.2 Splinesurfaces 90
6.3 Subdivisionsurfaces 93
6.3.1 Directevaluation. 96
6.3.2 Approximation using B@ziersurfaces 97
6.4 Algebraicsurfaces 99
6.41 GPU-basedraycasting, 100
6.5 Renderingapproaches 101
6.5.1 Tessellation 101
6.5.2 Raycasting 103
6.5.3 Directrasterization 107
Adaptive tessellation 111
7.1 ODbJeCtiVES 111
7.2 Recursivere Nement 114

721 Re nementcCriteria i 114

CONTENTS Xi

7.22 Re ningarectangulardomain. 115
7.2.3 Re ningatriangulardomain 118
7.24 Locallyhandlingcracks 119
7.25 GPU-based implementations 120
726 DISCUSSION o 122
7.3 Tessellationpatterns 123
7.3.1 Patterns for rectangular domains, 123
7.3.2 Patterns for triangulardomains L 126
733 Transitionregions 129
734 Fastpatterngeneration 129
7.4 Determining tessellationfactors. L. 131
7.4.1 Bounding screen-space trianglesizes 132
7.4.2 Bounding the approximationerror 133
7.4.3 Rational B@zier patches 135
744 BQziertriangles. 136
745 PNtriangles 137
75 Renderingofre nementpatterns 138
751 GPU-basedmethods 139
7.5.2 Connection patterns for dyadic tessellation of PN triangle meshes. . . 140
753 Instancedrendering 146
754 Numberofre nementpatterns 147
755 Directhardwaresupport 149
7.6 Patch-parallel on-the- ytessellation 150
7.6.1 CudaTess framework for adaptive tessellation 151
7.6.2 Example: bicubic rational B@zier patches 153
7.6.3 Example:PNtriangles. 158
7.6.4 DISCUSSION o 160
7.6.5 Comparison to rendering re nement patterns 162

[l Perception-aware rendering

8 Fundamentals of human visual perception 167
8.1 Human perception and psychophysics, 167

8.2 Humanvisualsystem 168

8.3 Colorandcolorappearance 172

8.4 Visualattention 173

9 Perceptually motivated rendering 175
9.1 Building blocks for computational models 175
9.1.1 Contrast sensitivity functions, 176

9.12 Visualmasking 180

9.1.3 Multi-channel decomposition 181

9.2 Vision models and visual di erencemetrics. 183

9.3 Overview of perceptually motivated applications 185

9.4 Real-timethresholdmaps 187

9.5 Interactive perceptual rendering pipeline 188

Xii

9.6 Problems in applying perceptual results

10 Visual popping

10.1 Popping and related treatment approaches
10.2 Aspects of perceiving popping
10.3 Perceptually motivated popping predictor

10.3.1
10.3.2
10.3.3
10.34
10.3.5

10.4 User study
10.4.1 Experiment I: direct evaluation with simple object
10.4.2 Experiment Il: indirect evaluation with real-world examples
10.4.3 Conclusion

11 Conclusion

Bibliography

Overview
Discussion

Spatio-velocity color vision model
Popping regions

Examples

CONTENTS

211

213

CHAPTER 1

Introduction

Computer graphics is concerned with generating synthetic images, which are nowadays rou-
tinely employed in a plethora of domains as diverse as movies and medical imaging. An im-
portant branch aims at rendering such images instantly at real-time rates, thus essentially pro-
ducing a video stream while being viewed. s real-time rendering allows the interactive ex-
ploration of data sets and virtual scenes, and is at the heart of computer games, which have
evolved to a huge mass market.

With the maturing of the eld, demands on visual quality are increasing. In particular, many
applications strive for a high degree of realism, o en with the ultimate (long-term) goal of
delivering photo-realistic images in real time. is comprises a multitude of aspects like the
desire to incorporate global e ects such as shadows and interre ecting light. Further objectives
include supporting illumination from large sources like the sky, modeling real-world materials
like car paint, and employing more detailed and visually smooth geometric objects.

is aim for realism is also re ected in the growing complexity of employed scene assets
as well as their origin. For example, real objects are scanned to acquire geometric detail, the
motion of actors is captured to obtain animation data for articulated characters, and a vast
collection of photographs of a surface sample is used to derive a material description. Another
factor which raises expectations of higher detail and quality is the increasing resolution and
size of display devices, facilitating paying attention to ne detail.

Simultaneously, driven by the demands especially from the games market, dedicated graph-
ics hardware has evolved tremendously and become a mainstream computer component. Its
computational power and memory bandwidth now typically far exceed the ones o ered by a
standard CPU. Utilizing highly parallel graphics hardware is thus crucial for achieving satis-
factory frame rates in real-time rendering, but it is also challenging. In particular, for high per-
formance an appropriate formulation of the task must be devised which, among others, yields
a reasonable degree of data parallelism.

However, even with graphics hardware fast response times usually necessitate approxima-
tions and quality restrictions. Since the image is synthesized for a human viewer, it is hence
expedient to leverage human visual perception for improving rendering e ciency, ideally pro-
viding only exactly as much detail as can actually be perceived. Moreover, accounting for per-
ception helps avoiding disturbing visual artifacts which hamper realistic appearance.

Improving realism in real-time rendering has thus many diverse facets, and is the focus of
extensive active research. isthesis contributes to thesee ortsand introduces new approaches
and techniques for physically plausible so shadows, the resolution-independent rendering of
curved surfaces, as well as for taking human visual perception into consideration.

2 1.1 Contributions

1.1 Contributions

In this dissertation, three selected topics are investigated which play an important role in en-
hancing the realism that is achievable at real-time frame rates. e rst covered aspect are so
shadows cast from an area light source. ey provide valuable visual cues and are typically
essential for a realistic appearance. Building on the general technique of deriving occluder ap-
proximations from a shadow map and backprojecting them onto the light source to determine
light visibility, we introduce methods which improve on visual quality and performance, and
thus on attainable realism. Our contributions include

anew approach for visibility determination, occlusion bitmasks, thato ersarobust solution
to the occluder fusion problem and hence to a main obstacle to high quality in previous
algorithms (Sec. 4.2),

e cient acceleration structures for concentrating computations on relevant occluders and
detecting completely lit and entirely shadowed points (Sec. 4.3),

a new breed of occluder approximations extracted from a shadow map with several favor-
able features, like implicitly avoiding light leaks (Sec. 4.4),

a new type of occluder approximation which raises reconstruction quality and hence accu-
racy at coarser resolution levels (Sec. 4.5),

a visibility interpolation method for cheaply supporting so shadows in multisample ren-
dering (Sec. 4.6), and

a practical scheme for smoothly varying so shadow quality in screen space, which allows
adapting rendering e orts according to visual importance (Sec. 5.2).

e second focus of this thesis is on rendering curved surfaces. ese are essential to repli-
cate the visual smoothness of many shapes encountered in the real world independent of view
and zoom factor. In particular, their use avoids o en-observed visibly piecewise-linear silhou-
ettes, which may easily destroy realism. We largely employ adaptive tessellation for rendering,
improving on attainable performance. Our main contributions are

a comprehensive overview of adaptive tessellation approaches, concentrating on those uti-
lizing graphics hardware, which also provides critical re ections on them (Chapter 7),

anovel, exible, patch-parallel framework for adaptive tessellation, termed CudaTess, which
runs all major steps, like deriving consistent tessellation factors, determining and evaluat-
ing surface sample points, and creating the tessellation topology, completely on the graphics
processing unit (GPU), and which more generally providesane cient solution for dynam-
ically generating varying amounts of geometry purely on the GPU (Sec. 7.6),

a new method for rapidly determining the tessellation factor for a PN triangle such that the
approximation error stays small (Sec. 7.4.5),

a new approach for rendering PN triangle meshes using domain pre-tessellations, which
closes gaps inherent to the PN triangle re nement of a base mesh (Sec. 7.5.2), as well as

a pixel-shader-based approach for raycasting PN triangles (Sec. 6.5.2).

CHAPTER 1 Introduction 3

ethird eld addressed by this thesis is human visual perception and its limited sensitivity.
On the one hand, rendering e ciency can be improved by exploiting this restricted detection
ability to avoid spending e ort on producing detail which is eventually invisible to the user,
thus enabling a higher realism for a given time budget. On the other hand, perceptual results
can be leveraged to quantify visual artifacts which may impact the perceived degree of realism.
Covering both aspects, we present

an approach to rapidly compute a threshold map, a perceptually motivated image metric
predicting tolerable per-pixel deviations (Sec. 9.4), which enables exploiting sensitivity-
reducing e ects like visual masking on a scene level for controlling the employed geometric
level of detail (Sec. 9.5),

a perceptually motivated predictor for estimating whether popping artifacts occur when
switching between two levels of detail of an object, which incorporates a spatio-velocity
color vision model and aggregates model output to meaningful popping regions (Sec. 10.3),
and

a user study conducted to evaluate the predictor, showing encouraging results (Sec. 10.4).

1.2 Outline

Our treatment of three distinct topics is also re ected in the structure of this thesis, where one
part is dedicated to each of them. Note that since our contributions are not entirely unrelated
to other research e orts and previous solutions, we decided to present them in their respective
context instead of devoting a single chapter exclusively to each of our new methods.

At rst, we review some background on real-time rendering in Chapter 2, introducing
terms and concepts for the remainder of the dissertation.

Subsequently, so shadows are covered in Part I. Initially, Chapter 3 provides an overview
of so shadows in general and of existing approaches for rendering (approximations of) them
in real time. Chapter 4 then discusses the adopted general so shadow algorithm and presents
our diverse contributions concerning visibility determination, acceleration structures, occluder
approximations and cheap multisample support. A er that, level-of-quality approaches for so
shadows are considered in Chapter 5 and a practical scheme for smooth quality variation is
described.

e second part is concerned with rendering curved surfaces. Chapter 6 reviews important
representatives of according primitives, paying special regard to issues related to real-time ren-
dering, and gives an overview of rendering approaches, during which our raycasting method
for PN triangles is introduced. Subsequently, a comprehensive treatment of adaptive tessella-
tion techniques is provided in Chapter 7. In particular, our numerous contributions are pre-
sented, including a novel, patch-parallel framework which executes all signi cant steps on the
graphics hardware.

Part 111 focuses on exploiting and accounting for human visual perception during render-
ing. At rst, Chapter 8 covers some fundamental background on perception. Chapter 9 then
discusses utilizing core characteristics of visual perception for rendering. It introduces our real-
time threshold maps and describes their application to controlling the employed geometric
level of detail of objects. By contrast, Chapter 10 is dedicated to the perception of popping
artifacts and presents our predictor and its evaluation within a user study.

Finally, Chapter 11 closes this thesis with a brief conclusion.

CHAPTER 2

Real-time rendering

roughout this thesis, we are primarily concerned with the domain of real-time rendering, the
creation of images at rates rapid enough that their instantaneous display induces the notion of
a continuous image sequence. Since achieving a high performance is crucial, this naturally in-
volves employing dedicated graphics hardware for carrying out the majority of computations.
Moreover, we strive for compatibility with the standard graphics rendering pipeline in the de-
sign of our methods to facilitate integration with existing real-time solutions.

In this chapter, we brie y review some related core topics, introducing terms and concepts
utilized in the following parts. Note that a basic knowledge of real-time rendering is assumed,
nevertheless. A good resource is the book by Akenine-M ller et al. [8]; further background on
computer graphics in general is provided by Shirley et al. [356], for instance.

At rst, we give a short overview of the rendering pipeline, before covering recent graphics
hardware as well as its use for tasks beyond pure rendering, like general data-parallel computa-
tions. Subsequently, approaches for adapting the level of detail are discussed. Finally, we brie y
elaborate on the pursued goal of realism.

2.1 Rendering pipeline

e rendering pipeline is central to real-time rendering. It decomposes the image synthesis task
into several logical stages. On a high level, the application provides geometric data as input
and adapts the stages accordingly to yield the desired behavior. e pipeline then processes
the items, determines pixel colors and outputs the result into the frame bu er, which typically
comprises a color bu er and a depth bu er for visible-surface determination.

anks to the graphics APIs OpenGL and Direct3D, the pipeline is essentially standard-
ized and a close mapping of the stages to graphics hardware units exist. Note that as APIs and
hardware evolve, di erent pipeline versions emerge, for instance by introducing new stages. In
the following, we focus on the graphics pipeline as de ned by Direct3D 10 [38], which is re-
alized by all current graphics hardware. Fig. 2.1 provides an overview. Two kinds of stages can
be distinguished. Whereas xed-function stages lack exibility and only o er limited control
by means of a few state parameters, programmable stages may be freely customized via user-
provided programs. ese so-called shaders can access constants, sample textures and read
from arbitrary bu er locations when processing their input.

e ow of data through the pipeline into a certain output bu er is initiated by a draw call
of the employed API. At rst, the input assembly stage takes the application-speci ed geometric
data, which is typically provided in vertex and index bu ers, and prepares it for the subsequent

5

6 2.1 Rendering pipeline

Vertices Primitives Fragments Pixels

~7 = i

Input Vertex Primitive Geometry . Pixel Output
—— —— — Rasterizer —»= ——
assembler shader assembler shader shader merger

Fixed-function stage Stream
output
[] Programmable stage
W Textures, Textures, Stream Textures, Frame
buffer(s), buffer
. buffers, buffers, output buffers,
index - - buffer - (render
ST constants constants constants target(s))

Memory

Figure 2.1 Overview of the rendering pipeline.

steps. Di erent input primitive topologies are supported, like point lists and lists and strips of
lines or triangles, but also adjacency-augmented ones which further comprise vertices of di-
rectly adjoining primitives.

Subsequently, each input vertex is processed independently in the vertex shader stage. e
invoked shader instance performs per-vertex computations, like the transformation of vertex
position into clip space (cf. Fig. 2.2). A er that, the processed vertices are combined to indi-
vidual primitives according to the speci ed topology by the primitive assembler.

ese primitives are then (optionally) fed into the geometry shader stage. For each primi-
tive, a separate shader instance is launched, which has access to all vertices of the primitive. It
is intended to perform primitive-wide computations as, for example, deriving the face normal,
and may even account for directly adjoining primitives in case an adjacency-augmented prim-
itive topology is employed. Note that a geometry shader can use either point lists, line strips
or triangle strips as output primitive topology, independent from its input. Consequently, the
primitive type may be altered in this stage, and more than one output primitive can be emitted
per input primitive. It is also possible to e ectively discard an input primitive by outputting no
primitives.

e resulting primitives can be streamed out to memory via the stream output stage. ey
are recorded as a set of individual primitives in the stream output bu er, which may be used as
input for a further pass through the pipeline. Typically, however, the primitives arriving from
the geometry shader stage are processed by the rasterizer. Each primitive is clipped, trans-
formed to screen space (cf. Fig. 2.2) and then rasterized by generating a fragment for each
covered pixel, interpolating vertex attributes accordingly.

Subsequently, a pixel shader (also referred to as fragment shader) is run for each fragment.
It determines the nal color or pixel value and optionally adapts the depth value. e resulting
pixel data is then combined with the existing frame bu er content by the output merger. is

In case of triangles (and no multisampling), a pixel is considered to be covered if its center is inside the
triangle.

CHAPTER 2 Real-time rendering 7

Frustum—= X

] | —
= B Y g
| ||

7 y Near plane Depth
Z)\X amera/eye Z
(a) Model (b) World (c) Camera (d) Clip (e) Screen

Figure 2.2 Coordinate spaces typically involved in rendering. Each object is initially de ned
in its own local model space, and placed within the scene by a subsequent transformation into
world space. A er that, a transformation into camera space (0 en also called eye space) is per-
formed, such that the camera (eye) is placed at the origin and looks down the negative (or
sometimes the positive) z axis. In a next step, the scene is subjected to a perspective (or al-
ternatively an orthographic) projection into homogeneous clip space, which maps the de ned
viewing volume (a frustum or an axis-aligned box, respectively) into a cube, clipping away ev-
erything outside. A er a dehomogenizing divide, resulting in normalized device coordinates,
a nal transformation into screen space is carried out. Here, (X, y) coordinates specify pixel
location, while z encodes depth.

typically involves a depth test to resolve surface visibility, where the new depth value is com-
pared against the one currently stored in the depth bu er to determine whether the pixel should
be updated. Apart from simply replacing the old pixel value, more complex blending operations
are supported. Note that the frame bu er may not necessarily contain a single color bu er but
can comprise multiple render targets (up to eight), each consisting of up to four channels (of
possibly 32-bit oating-point precision).

Normally, some optimizations are incorporated into realizations of the pipeline to increase
e ciency. For instance, to avoid running the pixel shader for fragments which eventually fail
the depth test, this check is already performed in the rasterizer, discarding the fragment unless
it passes. In addition to this so-called early-z test, o en z-culling is performed. To this end,
a coarser-resolution version of the depth bu er is maintained (possibly at reduced bit depth),
storing a conservative depth bound for each screen tile. Before producing any fragments within
a tile, the rasterizer then rst tests the primitive against the tiles depth bound. Note that these
optimizations are only possible if the pixel shader doesnt modify the fragments depth.

2.2 Graphics hardware

e whole rendering pipeline as detailed in the last section is realized by current consumer
graphics hardware like NVIDIAs GeForce GTX 280 or AMDs ATI Radeon HD 4870. Ow-
ing to the demands of the games market and facilitated by its huge volume, they feature high
computational power and large memory bandwidths at a ordable prices and are nowadays an
integral part of basically all (entertainment) computers.

e central component of graphics hardware is the graphics processing unit (GPU) [120,
282], which is responsible for carrying out the computations. It features dedicated special-
purpose units for handling the xed-function pipeline stages, like a rasterizer or raster op-
eration processors (ROPs), which implement the output merger. Moreover, extensive compu-

8 2.3 GPGPU and compute APIs

tational resources exist for shader execution. ese are actually shared by all shader stages in
the prevalent uni ed shader architecture. By dynamically assigning vertex, geometry and pixel
shader instances depending on the actual workload, a high utilization can thus be achieved.
Note that since each vertex is processed independently from the other vertices but the same
vertex shader is executed for all of them, they may be treated in a data-parallel fashion. e
same holds for primitives and fragments. As re ected in their architecture, GPUs heavily ex-
ploit this massive parallelism to achieve high performance.

Recent NVIDIA GPUs [218], for instance, feature a large number of scalar arithmetic logic
units (ALUs), called streaming-processors (SPs), each capable of 32-bit oating-point and inte-
ger operations. ese are arranged in groups of eight, each constituting a core referred to as
streaming multiprocessor (SM). e ALUs of a core are run in SIMD (single instruction, mul-
tiple data) fashion, that is, while each ALU operates on di erent data (e.g. a di erent vertex),
they all execute the same instruction at a time. e hardware further directly supports light-
weight threads, with one thread being spawned per vertex, primitive or fragment, executing
the respective shader program on a single ALU. Groups of 32 threads, referred to as warps,
are run in a time-sliced way. is multithreading enables a high throughput, keeping ALUs
utilized despite thread stalls and thus hiding memory access latency. Note that if the control

ow within a shader diverges for simultaneously executed threads, the individual control paths
are processed sequentially, thus reducing the e ective parallelism and utilization. Apart from
the ALUs, a core also comprises special-function units for evaluating transcendental functions
and 16 KB of so-called shared memory. Cores are further grouped to clusters, each additionally
featuring eight texture units for (tri-/bi-/linearly) Itered texture accesses.

As a concrete example, NVIDIAs GeForce GTX 280 has 240 SPs, organized in 10 clusters of
three SMs each, which o er a peak computational power of 933 G ops. e typically 1024 MB
of on-board graphics memory are accessed with a bandwidth of 142 GB/s. As this far exceeds
the performance achievable on a CPU, which is designed for rapid execution of a few primar-
ily sequential tasks, GPUs are increasingly employed for speeding up data-parallel workloads
beyond rendering (see Sec. 2.3).

A notable departure from the current situation, where the architecture of graphics hardware
closely matches a xed graphics pipeling, is pursued by Intels upcoming Larrabee chip [349].
It is essentially a many-core processor with wide SIMD units, where xed-function stages like
the rasterizer are implemented in so ware. Consequently, the whole pipeline becomes pro-
grammable and may be adapted exibly to tan applications particular needs.

2.3 GPGPU and compute APIs

Given the huge computational power and high memory bandwidth o ered by GPUs, it has
become attractive and desirable to harness these capabilities for data-parallel tasks other than
pure pipeline-based rendering. Initially, standard graphics APIs like OpenGL were utilized to
this end, forcing the programmer to express the task at hand as a rendering problem. One
standard technique that emerged is to store input data items into a texture, capture output data
items in the frame bu er, and render an appropriately sized quad, where the triggered pixel
shader computes each output item independently, using the input data. e output may then
serve as input for the next step. Such GPGPU (general-purpose computation on GPUs) e orts
led to the development of several solutions, like more complex GPU-suited data structures,
which are useful for rendering, too, enabling advanced computer graphics algorithms. A related

CHAPTER 2 Real-time rendering 9

survey, covering major techniques and example applications, is provided by Owens et al. [284].

For general data-parallel computing [282], however, having to access the computational
resources via a graphics API is cumbersome, incurs a certain overhead and may even be un-
necessarily restrictive. To address this issue, improve ease of use, increase achievable perfor-
mance and open up new markets, GPU vendors devised dedicated compute APIs. ey no
longer follow the rendering pipeline but provide a hardware abstraction which exposes more
details about and additional capabilities of the GPUs compared to graphics APIs. In particular,
memory accesses are more exible, permitting to write to multiple arbitrary memory locations.
On the other hand, some available graphics-speci ¢ hardware units like the rasterizer are not
exposed and hence cannot be utilized. Note that limited interaction with graphics APIs is possi-
ble by mapping bu er resources from a graphics API context into a compute programs address
space. Unfortunately, at least with current drivers, the associated overhead can be considerable
and sometimes hence constitutes a severe obstacle to high overall performance.

Currently employed compute APIs like ATI Stream (comprising CAL and Brook+) [6],
which evolved from ATIs CTM [5], and NVIDIAs CUDA [273] are targeted speci cally to the
hardware of the respective vendor, preventing written programs to run on GPUs from competi-
tors. issituation isalleviated by the upcoming industry standard OpenCL [185], as well as the
introduction of compute shaders in Direct3D 11 [52]. In the latter case, shaders are designed to
interact smoothly with the standard rendering pipeline, using the same language (HLSL) and
resource types as the shaders in the programmable pipeline stages. Moreover, the pixel shader
stage is extended appropriately by allowing random-access memory writes for preparing input
to a compute shader.

In compute APIs, a kernel (or compute shader) encapsulates a certain computational task.
Itis applied to a set of work items in parallel, launching one thread for each item. e items are
organized and indexed according to a multi-dimensional computation domain. is is further
structured into work groups (also called thread groups or blocks), where all items in a group can
cooperate via shared group-local memory and group-wide synchronization operations. Note
that this inter-item communication possibility is very powerful and not exposed by graphics
APIs,

CUDA

Since CUDA is employed in Sec. 7.6, we provide some more speci c¢ detail [270]. A work group
is called block in CUDA and all threads of a block are executed on the same SM. Each block is
further split into warps, with all 32 threads of a warp running in lock-step and hence automat-
ically being insync. e 16 KB of fast SM-local shared memory are split among all blocks con-
currently assigned to a SM. A blocks fraction of this memory can be accessed by all threads of
the block, allowing communicating data between them. It iso en employed as fast data cache,
where common data is rst brought in from global memory collectively by several threads
which then operate on it. Multiple blocks are further structured in a grid, de ning the compu-
tation domain.

Regarding memory accesses, each thread can perform uncached reads from and writes to
arbitrary locations in global memory. For maximum throughput, however, the concurrent ac-
cesses within a (half-)warp should allow of coalescing. It is also possible to perform cached
reads by resorting to textures. To exchange data with an OpenGL context, bu er objects can
be mapped to CUDAs global memory. Finally, threads may access their blocks part of shared
memory for intra-block cooperation.

10 2.4 Level-of-detail approaches

(a) 69,666 faces, 34,835 vertices (b) 30,000 faces, 15,002 vertices (c) 5,000 faces, 2,502 vertices

(d) 1,000 faces, 502 vertices (e) 500 faces, 252 vertices (f) 200 faces, 113 vertices

Figure 2.3 Example of view-independent discrete geometric LOD.

2.4 Level-of-detail approaches

An important and o en employed technique in real-time rendering is adapting the level of
detail (LOD) of scene elements to meet a certain budget, like limited memory resources and
especially maximum rendering time per frame. While it hence allows trading visual quality
for performance, it is also an e ective means to avoid rendering excessive detail which cannot
be discerned anyway. Most notably, the geometric complexity and hence the triangle count of
objects are commonly reduced with increasing distance and decreasing screen-space extent.
is helps avoiding eventually rendering triangles of pixel- or even sub-pixel-size and thus
positively a ectse ciency and attainable frame rate without (severely) compromising quality.
Normally, three di erent LOD types are distinguished. Whereas discrete LOD provides a
small number of di erent element versions of varying complexity, continuous LOD o ers a
whole continuum of LODs, which enables ne changes in overall element complexity. A spe-
cial kind of continuous LOD is view-dependent LOD (or adaptive LOD), where local, selective
adaptations of detail are possible, e.g. at the silhouettes or in back-facing parts, allowing to take
the actual view into account.
Many LOD methods have been developed which are concerned with the geometric com-
plexity of single objects. Classical discrete LOD [74] employs a few automatically derived or
hand-cra ed variants of decreasing triangle count for a certain model (see Fig. 2.3). ough

	Title page
	Abstract
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Real-time rendering
	2.1 Rendering pipeline
	2.2 Graphics hardware
	2.3 GPGPU and compute APIs
	2.4 Level-of-detail approaches
	2.5 Kinds of realism

	I Real-time soft shadows
	3 Overview of real-time soft shadows
	3.1 Soft shadows
	3.2 Real-time approaches
	3.2.1 Image-based approaches
	3.2.2 Geometry-based approaches
	3.2.3 Hybrid approaches
	3.2.4 Approaches for low-frequency environmental lights
	3.2.5 Discussion

	3.3 Quasi-interactive approaches for accurate soft shadows

	4 Soft shadow mapping with occluder backprojection
	4.1 Basic approach
	4.2 Visibility determination with occlusion bitmasks
	4.2.1 Occlusion bitmasks
	4.2.2 Advanced applications
	4.2.3 Discussion

	4.3 Acceleration structures
	4.3.1 Multi-scale shadow map
	4.3.2 Hybrid Y shadow map
	4.3.3 Discussion

	4.4 Occluder approximations
	4.4.1 Microquads
	4.4.2 Approximate occlusion bitmasks for microquads
	4.4.3 Microtris
	4.4.4 Exact occlusion bitmasks for microquads and microtris
	4.4.5 Discussion

	4.5 Coarser occluder approximations
	4.5.1 Microrects as a generalization of micropatches
	4.5.2 Construction of microrects at coarser levels
	4.5.3 Discussion of microrects
	4.5.4 Biasing problems

	4.6 Visibility interpolation for multisample support
	4.7 Results and conclusion

	5 Level of quality for soft shadows
	5.1 Possible approaches
	5.1.1 Multiple algorithms producing different quality
	5.1.2 Geometric occluder LOD
	5.1.3 Sparse visibility sampling
	5.1.4 Intrinsic algorithm parameters

	5.2 Smooth quality variation for soft shadow mapping
	5.2.1 Approach
	5.2.2 Discussion
	5.2.3 Results

	II Rendering of curved surfaces
	6 Fundamentals of curved surfaces
	6.1 Bézier surfaces
	6.1.1 Bézier patches
	6.1.2 Bézier triangles
	6.1.3 PN triangles

	6.2 Spline surfaces
	6.3 Subdivision surfaces
	6.3.1 Direct evaluation
	6.3.2 Approximation using Bézier surfaces

	6.4 Algebraic surfaces
	6.4.1 GPU-based raycasting

	6.5 Rendering approaches
	6.5.1 Tessellation
	6.5.2 Raycasting
	6.5.3 Direct rasterization

	7 Adaptive tessellation
	7.1 Objectives
	7.2 Recursive refinement
	7.2.1 Refinement criteria
	7.2.2 Refining a rectangular domain
	7.2.3 Refining a triangular domain
	7.2.4 Locally handling cracks
	7.2.5 GPU-based implementations
	7.2.6 Discussion

	7.3 Tessellation patterns
	7.3.1 Patterns for rectangular domains
	7.3.2 Patterns for triangular domains
	7.3.3 Transition regions
	7.3.4 Fast pattern generation

	7.4 Determining tessellation factors
	7.4.1 Bounding screen-space triangle sizes
	7.4.2 Bounding the approximation error
	7.4.3 Rational Bézier patches
	7.4.4 Bézier triangles
	7.4.5 PN triangles

	7.5 Rendering of refinement patterns
	7.5.1 GPU-based methods
	7.5.2 Connection patterns for dyadic tessellation of PN triangle meshes
	7.5.3 Instanced rendering
	7.5.4 Number of refinement patterns
	7.5.5 Direct hardware support

	7.6 Patch-parallel on-the-fly tessellation
	7.6.1 CudaTess framework for adaptive tessellation
	7.6.2 Example: bicubic rational Bézier patches
	7.6.3 Example: PN triangles
	7.6.4 Discussion
	7.6.5 Comparison to rendering refinement patterns

	III Perception-aware rendering
	8 Fundamentals of human visual perception
	8.1 Human perception and psychophysics
	8.2 Human visual system
	8.3 Color and color appearance
	8.4 Visual attention

	9 Perceptually motivated rendering
	9.1 Building blocks for computational models
	9.1.1 Contrast sensitivity functions
	9.1.2 Visual masking
	9.1.3 Multi-channel decomposition

	9.2 Vision models and visual difference metrics
	9.3 Overview of perceptually motivated applications
	9.4 Real-time threshold maps
	9.5 Interactive perceptual rendering pipeline
	9.6 Problems in applying perceptual results

	10 Visual popping
	10.1 Popping and related treatment approaches
	10.2 Aspects of perceiving popping
	10.3 Perceptually motivated popping predictor
	10.3.1 Overview
	10.3.2 Discussion
	10.3.3 Spatio-velocity color vision model
	10.3.4 Popping regions
	10.3.5 Examples

	10.4 User study
	10.4.1 Experiment I: direct evaluation with simple object
	10.4.2 Experiment II: indirect evaluation with real-world examples
	10.4.3 Conclusion

	11 Conclusion
	Bibliography

