
Fast Parallel Surface and Solid Voxelization on GPUs

Michael Schwarz¤ Hans-Peter Seidel

Max-Planck-Institut Informatik

Conservative

Rasterization

Conservative
voxelization

Voxelization via
rasterization

(from 3 directions)

Octree-based sparse solid voxelization

Figure 1: Our methods can rapidly create surface and solid voxelizations, surpassing the limitations of rasterization-based approaches. Left:
The conservative voxelization robustly captures all overlapped voxels.Right: Exploiting the uniformity of large voxel regions, we can directly
perform solid voxelization into a sparse octree, signi�cantly reducing the memory requirements.

Abstract

This paper presents data-parallel algorithms for surface and solid
voxelization on graphics hardware. First, a novel conservative
surface voxelization technique, setting all voxels overlapped by a
mesh's triangles, is introduced, which is up to one order of magni-
tude faster than previous solutions leveraging the standard rasteri-
zation pipeline. We then show how the involved new triangle/box
overlap test can be adapted to yield a 6-separating surface voxeliza-
tion, which is thinner but still connected and gap-free. Comple-
menting these algorithms, both a triangle-parallel and a tile-based
technique for solid voxelization are subsequently presented. Fi-
nally, addressing the high memory consumption of high-resolution
voxel grids, we introduce a novel octree-based sparse solid vox-
elization approach, where only close to the solid's boundary �nest-
level voxels are stored, whereas uniform interior and exterior re-
gions are represented by coarser-level voxels. This representation
is created directly from a mesh without requiring a full intermediate
solid voxelization, enabling GPU-based voxelizations of unprece-
dented size.

Keywords: voxelization, GPU computing, overlap testing, parallel
data structure creation, octree

1 Introduction

Binary voxel representations are heavily employed in computer
graphics. They are typically derived as discrete approximations of
objects via a process called voxelization. In asurface voxelization,
all voxels are set that ful�ll some overlap or distance criterion with
respect to a surface, whereas asolid voxelizationsets all voxels con-
sidered interior to an object.

¤e-mail: mschwarz@mpi-inf.mpg.de

O®ering a regular representation that is independent from object
and surface complexity, voxelizations are used in domains as di-
verse as 3D shape matching and visibility processing. In the lat-
ter, for instance, rays may be cast against a dynamically created
scene voxelization to determine occlusion when computing light-
ing [Nichols et al. 2010] or ambient occlusion [Reinbothe et al.
2009]. Another application is collision detection, where a voxel-
wise comparison of the voxelizations of two objects easily identi�es
collisions. Similarly, bitwise combinations of solid voxelizations
are naturally applicable for performing constructive solid geometry
tasks. Voxelizations are also helpful for establishing computational
domains, e.g. for �uid simulations with obstacles or for light prop-
agation.

Since voxelization is often a performance-critical, integral part, sev-
eral algorithms have been proposed to perform voxelization of tri-
angle meshes on the GPU, leveraging the fast rasterization pipeline
for this 3D scan conversion. However, this inviting use of the ras-
terizer causes most surface voxelization approaches to su®er from
gaps and missed thin features in the voxelization, mainly because a
voxel is only set if the triangle overlaps the corresponding pixel's
center. Although this can be alleviated by manually enlarging the
triangle's pixel footprint in the geometry shader stage, resulting al-
gorithms are typically rather slow, hampering their utility for real-
time applications. Concerning solid voxelization, a fast, straight-
forward approach exists [Eisemann and Décoret 2008] but unfor-
tunately only works with OpenGL, as it relies on bitwise blending
operations, which are no longer exposed in Direct3D. By contrast,
alternative solutions processing voxel slices sequentially are gener-
ally supported by all graphics APIs but are much slower.

In this paper, we approach voxelization with new data-parallel al-
gorithms that utilize GPUs as general, massively parallel compute
devices instead of building on the standard pipeline. Basically, they
replace the �xed-function 2D rasterizer by a collection of custom
“3D rasterizers”. This has several advantages. First, we don't have
to indirectly modify the rasterizer's pixel coverage test by appro-
priately enlarging input triangles and discarding super�uous frag-
ments, which constitutes extra work and occupies processing units,
but can directly apply our desired coverage criterion. Second, we
may dynamically choose the coordinate plane (xy, xz or yz) opti-
mal for processing on a per-triangle basis, whereas in the standard
pipeline this involves a separate rendering for each coordinate plane
as well as a subsequent data merging step. This is due to the texture-
based encoding of the voxelization, e.g. across multiple channels of

Michael Schwarz
Copyright notice
© ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Graphics, 29, 6 (December 2010). http://doi.acm.org/10.1145/1882261.1866201

a texture array. By contrast, we are free to adopt any storage orga-
nization scheme and can access this arbitrarily.

In particular, this freedom enables us to account for the fact that sur-
face voxelizations are typically populated rather sparsely and that,
analogously, solid voxelizations usually encompass many uniform
regions. For instance, we could store such a voxelization in a sparse
octree, where a coarser-level node is only re�ned if the represented
voxel space is non-uniform, i.e. �nest-level nodes merely exist for
voxels close to the object's boundary. As we show in this paper,
such a space-e± cient voxelization representation can be created di-
rectly from an input mesh without having to �rst derive an interme-
diate full voxelization. Hence, it becomes easily possible to cope
with voxelizations of grid size 40963, which would require 8 GB
of memory if represented fully as bit array. As an additional ben-
e�t, the hierarchical representation enables faster processing of the
voxel data, e.g. during ray traversal.

This paper covers a wide spectrum of voxelization procedures with
dedicated data-parallel solutions that take the above considerations
into account. Initially, we focus on surface voxelization (Sec. 3) and
present a new parallel algorithm for fast conservative voxelization,
where all voxels overlapped by a triangle are identi�ed and set, uti-
lizing a new triangle/box overlap test. Adapting this test, we then
address creating a thinner, 6-separating voxelization. Subsequently,
we turn to solid voxelization (Sec. 4) and introduce both a direct,
triangle-parallel approach and an advanced tile-based algorithm.
Finally, we present a novel octree-based sparse solid voxelization
technique (Sec. 5), demonstrating the direct scan-conversion of tri-
angles into a sparse spatial data structure on the GPU.

Numerous applications that utilize voxelizations can directly pro�t
from our methods. Generally, they enable speeding up these appli-
cations, improving their attainable quality (e.g. because conserva-
tive voxelization becomes a®ordable in real-time scenarios), or us-
ing larger voxelizations without negatively a®ecting memory con-
sumption or construction time.

2 Related work

Real-time voxelization Many voxelization algorithms with var-
ious properties have been devised. Among the most relevant real-
time approaches, Fang and Chen [2000] construct a surface vox-
elization slice-wise, rendering the geometry once for each voxel
slice while restricting the view volume to this slice. To reduce the
number of rendering passes, Li et al. [2005] employ depth peeling
to capture all surface points and then scatter them into a �attened
voxel grid via point rendering. The peeling process is done along all
three orthogonal voxel grid axes to decrease the number of missed
voxels. While these approaches spend one texel for storing a voxel,
Dong et al. [2004] encode binary voxels in separate bits of multiple
multi-channel render targets, allowing to treat many slices in a sin-
gle rendering pass. A fragment's depth is used to derive the voxel
and its bit is set via additive alpha blending. They also consider
all three grid axes as viewing direction, each time rendering only
the triangles whose normal's dominant direction is parallel to the
current axis, and then compose the resulting voxelizations. By con-
trast, Eisemann and D́ecoret [2006], employing the same e± cient
encoding, render only from one viewing direction but use the more
robust bitwiseor-blending.

All these approaches easily miss thin structures and may su®er from
gaps, especially if only one viewing direction is utilized, because
they are based on the point sampling provided by conventional ras-
terization. In their conservative voxelization algorithm, Zhang et
al. [2007] hence use conservative rasterization [Hasselgren et al.
2005] to capture all pixels overlapped by a triangle and then derive
a per-pixel depth range along the viewing direction, identifying all

overlapped voxels. Sometimes, however, additional voxels may be
set due to robustness problems in the depth range computation.

Fewer methods target solid voxelization; most are restricted to
closed, watertight input objects and determine all voxels whose cen-
ter is inside. This classi�cation is based on the parity of the number
of intersections a ray originating at the voxel center has with the
object, where an odd value indicates being interior. Hence, render-
ing the object from one direction and for each fragment �ipping the
inside/outside state of all a®ected voxels below directly yields the
desired voxelization. Fang and Chen [2000] present an according
slice-wise approach, whereas Eisemann and Décoret [2008] process
all slices at a time, achieving high performance.

Rasterization Testing whether a sample point is covered by a
triangle is typically done via three linear edge functions [Pineda
1988], whose sign indicates in which half-space of an edge a point
is located. Once set up, these functions can be e± ciently evaluated
for multiple points. Akenine-M̈oller and Aila [2005] extend this
approach to test a 2D axis-aligned box for being overlapped by a
triangle. They show that the only modi�cation required is selecting
a di®erent evaluation point based on the signs of an edge's normal
components, where the involved point o®set can be directly baked
into the function coe± cients; this insight is used extensively in our
coverage tests.

Recently, a few approaches have been presented that perform raster-
ization on massively parallel hardware, omitting the �xed-function
rasterizer. Some of them operate triangle-parallelly, using one
thread per triangle, which loops over the pixels in the triangle's
bounding box and tests them for coverage [Liu et al. 2010; Fata-
halian et al. 2009]. Others pursue a tile-based strategy [Seiler et al.
2008; Abrash 2009; Eisenacher and Loop 2010], where �rst trian-
gles are assigned to all pixel tiles they overlap. Then, tiles are pro-
cessed in parallel (typically allocating one thread per sample point),
each processing its triangle list sequentially. This approach enables
keeping a tile's pixel data in fast memory and avoids con�icting
writes by multiple triangles overlapping the same pixel.

Parallel data structure construction E± cient GPU-based con-
struction algorithms have been developed for several spatial data
structures, like kd-trees [Zhou et al. 2008] and BVHs [Lauterbach
et al. 2009]. Sun et al. [2008] build a texture-based full octree rep-
resentation of a given solid voxelization, while Zhou et al. [2010]
construct a sparse octree of a point cloud with full per-node ad-
jacency information. Moreover, two roughly identical algorithms
for constructing uniform grids for triangle soups [Kalojanov and
Slusallek 2009; Ivson et al. 2009] have been devised; they are basi-
cally also applicable to assigning triangles to pixel tiles.

3 Surface voxelization

For surface voxelization, many applications demand a conservative
criterion that sets a voxel if it is (partially) overlapped by a triangle
(cf. Fig. 2 a), where we also consider voxels that are merely touched
by a triangle to be overlapped by it. After initially concentrating
on this conservative voxelization in the following subsections, we
additionally introduce a di®erent criterion in Sec. 3.4 that results in
thinner voxelizations.

3.1 Triangle/box overlap test

Conservative voxelization requires identifying all voxels a triangle
overlaps and hence it is crucial to utilize a fast test for triangle/voxel
overlap. Such a test should further e± ciently support an organiza-
tion into an initial setup stage that merely depends on the triangle
and a subsequent actual test part for a speci�c voxel that utilizes
this setup data, since this enables rapid sequential and parallel test-

(a) Conservative (b) 6-separating (c) Solid

Figure 2: Di®erent kinds of voxelizations covered.

ing of multiple (identically-sized) voxels. A new triangle/box test
that ful�lls these requirements is detailed in the following.

Given a triangleT with verticesv0, v1, v2 and an axis-aligned boxB
(e.g. a voxel) with minimum cornerp and maximum cornerp + ¢p,
we observe thatT overlapsB i®

a) T 's plane overlapsB and

b) for each of the three coordinate planes (xy, xz, yz), the 2D pro-
jections ofT andB into this plane overlap.

To test for the plane overlap, similar to Haines and Wallace [1991],
we determineT 's normaln and thecritical point

c =
Ã(

¢px; nx > 0
0; nx · 0

)
;
(

¢py; ny > 0
0; ny · 0

)
;
(

¢pz; nz > 0
0; nz · 0

)! T

and check whetherp + c and the opposite box cornerp + (¢p ¡ c)
are on di®erent sides of the plane or one of them is on the plane,
that is whether

¡
hn;pi + d1

¢ ¡
hn;pi + d2

¢
· 0; (1)

whered1 = hn;c ¡ v0i andd2 = hn; (¢p ¡ c) ¡ v0i .

For the 2D projection overlap tests, we utilize edge functions
[Pineda 1988], each evaluated at that corner ofB's projection, a 2D
axis-aligned box, that yields the largest value and hence is “most in-
terior” with respect to the edge (cf. Fig. 3 a). More precisely, using
the xy coordinate plane as example, we compute

nxy
ei = (¡ ei;y; ei;x)T ¢

(
1; nz ¸ 0

¡ 1; nz < 0

)

dxy
ei = ¡hnxy

ei ; vi;xyi + max
n
0;¢pxn

xy
ei ;x

o
+ max

n
0;¢pyn

xy
ei ;y

o (2)

for all three edgesei = vi+1 mod 3¡ vi and test whether

^ 2

i=0

³
hnxy

ei ; pxyi + dxy
ei ¸ 0

´
(3)

holds true, indicating overlap. Because the evaluation points for the
edge functions di®er, it is additionally necessary to verify thatT 's
axis-aligned bounding box actually overlapsB.

Consequently, for a given triangleT and box extent¢p, T 's bound-
ing box,n, d1, d2, andnxy

ei , dxy
ei , nxz

ei
, dxz

ei
, nyz

ei , dyz
ei (i = 0;1;2) can be

determined in a setup stage. The actual overlap test for a box with
minimum cornerp then requires merely testing for bounding box
overlap and checking the criteria in Eqs. 1 and 3.

v0

v1v2

ne0

ne1

ne2

+ +

+ v0

v1v2

ne0

ne1

ne2+ !

+

(a) Conservative (b) 6-separating

Figure 3: Critical points for evaluating the edge functions in the 2D
projection overlap tests, annotated with the function result's sign.

Comparison The current standard triangle/box overlap test by
Akenine-Möller [2001] is based on the separating axis theorem
(SAT). The tests for the coordinate axes (x, y, z) and the normaln
are equivalent to our bounding box and plane overlap tests, respec-
tively. Interestingly, the remaining 9 axes tested essentially corre-
spond to our 2D edge normalsnxy

ei , nxz
ei

, nyz
ei (i = 0;1;2). However,

while the SAT approach requires testing the projections ofT andB
onto an axis for overlap, our method merely necessitates evaluating
an edge function and checking the result's sign. As illustrated in
Fig. 4, the SAT test for one of these axes actually performs unnec-
essary work. Of the two con�gurations where an axis is separating
(a, c), i.e. the projections onto it don't overlap, only the one where
the box is in the exterior half-space of the corresponding edge (a)
needs to be captured; the other one is already handled by the axis
for the more adjacent edge (c). Overall, the SAT-based triangle/box
overlap test requires more instructions than our approach, and a
setup-based formulation additionally involves more set-up quanti-
ties in the per-box test part, hence consuming more registers when
implemented on the GPU.

ne!
axisa

+ +!

(a) (b) (c)

Figure 4: Di®erent con�gurations for SAT-based overlap test.

3.2 Triangle-parallel conservative voxelization

To obtain a conservative voxelization, all voxels overlapped by
an input mesh's triangles must be determined. One natural data-
parallel approach to this computation is processing all triangles
in parallel, launching one thread per triangle. For each triangle,
�rst the bounding box is determined and then all voxels inside the
bounding box are tested for overlap utilizing our triangle/box over-
lap test. If an overlap test passes, the corresponding voxel is set.

Note that we also consider voxels that are merely touched by the
bounding box, which is important to make the voxelization inde-
pendent of the tessellation of planar surfaces (cf. Fig. 5 a). More-
over, since only voxels overlapped by the bounding box are pro-
cessed in the �rst place, the bounding box overlap test can be omit-
ted when running the triangle/box overlap test.

Voxel updates Each voxel's state is encoded by a single bit in a
linear array. With multiple triangles being processed concurrently,
some of them may try to update the same 32-bit value at the same
time. We hence employ the atomicor function to avoid con�icting
writes and ultimately missing any update. Moreover, when looping
over the voxels within the bounding box, we make the inner-most
loop proceed in x direction, where adjacent voxels are stored in
consecutive bits. Instead of writing each set voxel instantaneously,
we bu®er the 32-bit value a voxel's bit belongs to in a register and
only write it to memory once all relevant voxels within this 32-bit
value have been processed, potentially saving many atomic updates.

,

(a) Consistent vs. inconsistent voxelization (b) Vertex voxelization

Figure 5: The voxelization should be independent of planar surface
tessellations. (a) Hence, touched voxels outside the bounding box
must also be considered. (b) But the simple distance criteria by
Huang et al. [1998] may wrongly include additional voxels.

Test specialization The algorithm can be improved by reduc-
ing the number of tested voxels and case-speci�cly skipping un-
necessary parts of the triangle/box overlap test. Key to this is the
observation that because a triangle is planar, its voxelization is at
most three voxels thick in the dominant axis direction of the trian-
gle's normaln. We exploit this by specializing the test for all three
coordinate axes. For instance, if the z axis isn's dominant axis,
it su± ces to loop over the triangle's extent in the xy coordinate
plane. For each visited voxel column (extending along z), �rst the
2D overlap test for the triangle's xy projection is run. If it passes,
we determine the range of voxels within the column overlapped by
the triangle's plane. To this end, based on the signs ofnx andny,
those two opposing corners of the voxel column (in the xy plane)
are determined where the plane reaches its minimum and maximum
z value within the column, respectively. These are then projected
along the z axis onto the triangle's plane to determine the covered
z range. Subsequently, all voxels in this range are subjected to the
remaining two 2D overlap tests for the xz and yz planes. Note that
no further plane overlap test is required, since by construction only
voxels overlapped by the triangle's plane are processed.

If the (unclipped) depth range for a voxel column encompasses only
one voxel, this voxel is guaranteed to be overlapped by the triangle.
Consequently, the outstanding 2D overlap tests for the xz and yz
planes can be omitted. One may hence even defer the setup for
these two tests. Similarly, if the (unclipped) bounding box of a
triangle is only one voxel thick, the whole triangle/box overlap test
simpli�es to a single 2D projection overlap test. Even more, in case
the (unclipped) bounding box covers merely one voxel in at least
two directions, all voxels overlapped by the bounding box can be
directly set without any further tests.

Implementation Overall, nine di®erent cases can be distin-
guished where the discussed test optimizations apply: 1D bounding
boxes (one-voxel extent iņ 2 directions) and three possible axes
along which they extend; 2D bounding boxes and three possible co-
ordinate planes in which they extend; 3D bounding boxes and three
possible dominant axes of the triangle's normal.

One straightforward implementation option is determining the oc-
curring case when processing a triangle and then running the ac-
cording specialization of the overlap test. Although it is possible
to merge the specializations for the 1D cases with y and z extent
as well as for the 2D cases with xz and xy extent, this approach
easily su®ers from high thread divergence, since a warp of them is
executed in SIMD lockstep but the respective triangles can belong
to many di®erent cases. Moreover, the number of voxels to test per
triangle may vary widely, resulting in underutilization.

This can be alleviated by pursuing a multi-kernel approach instead,
where initially the case for each triangle is determined and written
to a bu®er, along with the triangle id. The stored case value encodes
the bounding box type, the axis or plane of extent, and the number
of voxel columns to process. The bu®er is then sorted and the num-
ber of cases for each bounding box type is derived via compaction.
Thanks to this reordering, all triangles in a warp typically belong to
the same case and have a similar number of voxels to process. In

practice, we utilize a separate kernel for each bounding box type,
enabling a higher degree of concurrency for the 1D and 2D cases
because of their lower register requirements.

3.3 Separability

Our conservative voxelization constitutes asupercoverof the in-
put mesh and hence is 26-separating for closed surfaces [Cohen-
Or and Kaufman 1995]. 26-separability is a topological property
and means that no path of 26-adjacent voxels exists that connects a
voxel on one side of the surface and a voxel on the other side. Two
voxels are 26-adjacent if they share a common vertex, edge or face;
they are 6-adjacent if they share a face. In the following, to addi-
tionally capture non-closed surfaces, we use the term separability
in a looser sense for them, considering only paths that intersect the
mesh surface.

A comparison of our approach to the criteria for separating vox-
elizations by Huang et al. [1998] reveals that our plane overlap test
is mathematically equivalent to their de�nition of a 26-separating
plane voxelization. Their extension to triangle meshes includes all
voxels that both satisfy this plane criterion and have their center in-
side the positive half-spaces of all the 3D edge planes, as well as all
voxels whose center are within a distance of half a voxel's diagonal
to an edge or vertex. However, this easily includes voxels outside
the voxelization of the triangle's plane (cf. Fig. 5 b), rendering the
mesh's voxelization dependent on the tessellation of planar surface
parts. By contrast, our method operates by essentially removing all
voxels from the triangle plane's voxelization that are entirely out-
side the triangle. Interestingly, each involved 2D projection overlap
test turns out to be equivalent to performing an 8-separating (the
2D analog to 26-separability) pixelization of the edges according to
Huang et al.'s respective criterion and further including the trian-
gle's interior. Note that we are hence basically voxelizing the edges
in addition to the interior and that such an edge voxelization solely
depends on the edge and not the triangle.

3.4 6-separating surface voxelization

In some applications, instead of a conservative voxelization, which
is 26-separating (and hence 6-connected), a “thinner” surface vox-
elization that is 6-separating (and hence 26-connected) is preferred
(cf. Fig. 2 b). Thanks to the observations in Sec. 3.3, we can eas-
ily adapt our overlap test to create such a 6-separating voxelization.
Harnessing the criterion for 6-separating plane voxelization from
Huang et al. [1998], the o®sets in the plane test become

d1 = hn; 1
2¢p ¡ v0i + 1

2¢p¦ jn¦ j

d2 = hn; 1
2¢p ¡ v0i ¡ 1

2¢p¦ jn¦ j
with ¦ = arg max

¤=x;y;z
jn¤ j:

Similarly, Huang et al.'s criterion for 4-separating line pixelization
is adopted for the 2D projection overlap tests (cf. Fig. 3 b); e.g. the
o®sets from Eq. 2 become

dxy
ei = hnxy

ei ; 1
2¢pxy ¡ vi;xyi + 1

2¢p¦ jnxy
ei ;¦ j; with ¦ = arg max

¤=x;y
jnxy

ei ;¤ j:

We again optimize the computations by taking the dominant axis
of the triangle's normal into account. Apart from the test setup,
the only change required is adapting the determination of the con-
sidered voxel range in a voxel column to the modi�ed plane over-
lap test. Concretely, we project a voxel column's center (in the xy
plane) along the z axis onto the triangle's plane and take the accord-
ing voxel(s). Only in case this projection touches two voxels, more
than one voxel needs to be considered. In contrast to the conserva-
tive voxelization, 1D and 2D bounding boxes additionally require
plane overlap testing; we hence omit specializations for them.

4 Solid voxelization

Solid voxelization mandates a closed, watertight object and sets all
voxels whose center is inside this object (cf. Fig. 2 c). To capture
�ne details and handle non-solid parts of a model like thin sheets,
a surface voxelization may be performed subsequently, setting the
additional voxels via bitwiseor.

Recall that solid voxelization essentially boils down to rasterizing
the object into a multi-sliced frame bu®er, where a fragment e®ects
�ipping the inside/outside state of all voxels below. In this section,
we consider two according data-parallel algorithms: a triangle-
parallel approach and a tile-based method.

4.1 Direct, triangle-parallel solid voxelization

Similar to the surface voxelization approaches, we parallelize over
all triangles, dedicating one thread per triangle. For each trian-
gle, we �rst determine the bounding box in the yz plane and derive
the yz range of covered voxel centers. If this range is non-empty,
we loop over the contained voxel columns. For each, the center is
tested against the triangle's yz projection, using edge functions. The
edge normalsnyz

ei are determined as in Eq. 2 anddyz
ei = ¡hnyz

ei ; vi;yzi .
If the test passes, the center is projected along the x axis onto the
triangle's plane. The resulting x coordinateq in voxel space, where
each voxel (i; j; k), 0 · i < nx, is of size 13, then yields the x range
bq+ 1

2c =: q̄; : : : ;nx ¡ 1 of voxels whose corresponding bits have to
be �ipped. This is performed utilizing the atomicxor function.

Note that if an edge or vertex shared by adjacent triangles overlaps
the voxel center, the triangle overlap test has to report an overlap for
only exactly one of the triangles to avoid erroneously counting one
surface intersection multiple times. We hence adopt the top-left �ll
rule from ordinary rasterization, which ignores overlapping edges
except left edges (nyz

ei ;y > 0) and top edges (nyz
ei ;y = 0 ^ nyz

ei ;z < 0). In
practice, we modify the test from Eq. 3 to

^ 2

i=0

³¡
hnyz

ei ; pyzi + dyz
ei

¢
+ f yz

ei > 0
´
;

where the introduced quantityf yz
ei is set to the smallest �oating-

point number if the left or top edge criteria hold and to zero other-
wise. Moreover, we ensure a consistent ordering of the vertices.

This triangle-parallel voxelization approach has two main weak-
nesses. First, the number of relevant voxel columns can vary sig-
ni�cantly among the triangles processed by one warp, leading to
underutilization. Second, especially for larger voxel grids, �ipping
all voxels in the derived x range poses high memory bandwidth
requirements. Moreover, many atomic operations may have to be
sequentialized, negatively a®ecting performance.

4.2 Tile-based solid voxelization

To elude the shortcomings of the triangle-parallel method, we also
pursued a tile-based approach to solid voxelization. At �rst, we
assign triangles to tiles (in the yz plane) of 4£4 voxel columns,
yielding a work queue of tile/triangle pairs sorted by tile. The tiles
are then processed in parallel, using one warp of threads per tile,
each looping over its assigned triangles.

Tile assignment Initially, we determine for all triangles in par-
allel the number of tiles overlapped by them. The resulting bu®er
is subjected to an exclusive scan, yielding the required size of the
work queue and an o®set into this queue for each triangle. Subse-
quently, all triangles are visited in parallel again, each determining
the tiles overlapped by it and writing the corresponding tile/triangle
pairs into the work queue, starting at its o®set. This queue is then
sorted by tile. Finally, we derive a list of all tiles in the queue along

with an o®set to where a tile's triangle list in the work queue starts
via compaction.

When determining a triangle's tile count, we �rst derive the trian-
gle's bounding box and check whether any voxel column center is
overlapped at all. If so, we test all tiles that contain voxel centers
overlapped by the bounding box against the triangle, again using
edge functions, each evaluated at the critical voxel column cen-
ter within the tile. While this testing is more expensive than just
enumerating the tiles covered by the bounding box, it results in a
shorter queue, saving memory, speeding up sorting and avoiding
processing irrelevant triangles later on. Since the testing has to be
repeated when writing the tile/triangle pairs, we considered caching
the binary results for the �rst 32 visited tiles per triangle in a bu®er,
which didn't pay o®, though.

Tile processing The triangles assigned to a tile are processed
sequentially. We allocate one thread per voxel column, testing its
center for overlap and determining the range of a®ected voxels in
the column, analogous to Sec. 4.1. To keep writes to global mem-
ory to a minimum, each thread maintains an active 32-bit segment
of its column and a �ip bitmask, where each bit corresponds to a
32-bit segment. When an overlapping triangle triggers the �ipping
of all voxels with x index¸ q̄, we �rst check whether ¯q is in the
active segment. If this is not the case, we �ush the active segment's
value to global memory via bitwisexor and choosebq̄=32c as new
active segment, initializing its value with zero. We then �ip all bits
for voxels¸ q̄ in the active segment, as well as all bits in the �ip
bitmask for the segments succeeding the active one. Once a tile has
been completely processed, the active segment is �ushed and the
bits of all segments whose bit is set in the �ip bitmask are �ipped.
Note that no atomic memory operations are required.

Since a warp comprises 32 threads, to utilize all threads, we have to
either choose a larger tile size, which reduces sample test e± ciency
[Fatahalian et al. 2009], or process two tiles per warp, which is sus-
ceptible to varying per-tile triangle counts, or process two triangles
per warp, which leaves the second half-warp idle at the end of the
triangle list if its length is odd. We opted for the last option, which
causes two threads to process the same voxel column. To avoid con-
�icting and super�uous writes to global memory, these twin threads
communicate. For instance, when one thread �ushes an active seg-
ment but its twin thread has the same segment active, the value is
incorporated in the twin thread's value instead of writing it to global
memory.

Finally, to avoid fetching a triangle's data and setting up the over-
lap test quantities redundantly by all threads, we interleave the per-
voxel-column processing with a parallel triangle setup stage where
each thread fetches and sets up one triangle, storing the setup data
in shared memory. In practice, we are currently limited to preparing
14 triangles at once due to the shared memory's limited size.

5 Sparse solid voxelization

The voxelization methods presented so far all
operate on a full grid, explicitly storing each
voxel's state. However, voxelizations typi-
cally contain larger blocks of uniform voxel
state, suggesting a more space-e± cient rep-
resentation using a sparse hierarchical struc-
ture where nodes representing uniform re-
gions are not further re�ned. Instead of cre-
ating a voxelization and then transforming it into such a represen-
tation, the voxelization should be performed directly into the hier-
archical structure. We devised an according method for solid vox-
elization that uses an octree as representation, noting that it could
be applied to surface voxelization analogously.

Because adding individual nodes on the �y during voxelization is
ill-suited in a massively parallel context, we create the adapted oc-
tree structure up-front and subsequently populate it:

² First, all �nest-level (i.e. level-0) nodes required during the vox-
elization have to be determined. Since an octree node has either
no or eight children, it su± cies to merely determine all required
level-1 nodes instead (Sec. 5.1).

² Based on this node set, the whole sparse octree is then con-
structed bottom-up (Sec. 5.2).

² Subsequently, the input object is voxelized into the �nest-level
nodes (Sec. 5.3).

² Finally, the inside/outside parity �ips are propagated hierarchi-
cally to obtain a solid voxelization (Sec. 5.4).

In our implementation (cf. Fig. 6), each level-0 node stores a voxel
sub-grid of size 43 for encoding and processing e± ciency, thus es-
sentially representing two �ner levels. All nodes of one level are
stored contiguously, sorted according to the Morton space-�lling
curve. Hence, a node's eight children are contiguous in memory
and the �rst child has an index that is a multiple of eight. Each
node maintains a pointer to its �rst child as well as pointers to its
parent and its neighbors in x direction, which help accelerating the
voxelization and propagation stages.

Morton index
Parent node
First child node

+x neighbor node
!x neighbor node

Sample index
01
2

Figure 6: Overview of the octree structure (2D analog).

5.1 Determination of active level-1 nodes

To determine the level-1 nodes overlapped by the input mesh, re-
ferred to asactivenodes, we could adopt a strategy similar to deriv-
ing the work queue in Sec. 4.2. However, it is more space-e± cient
to generate a surface voxelization into a grid with level-1 resolu-
tion and to extract the active voxels from it. Because all level-1
nodes whose voxel region is not uniform have to be identi�ed as
active, we perform a conservative voxelization, using the optimized
version from Sec. 3.2 with the following modi�cations. First, the
triangle is shifted in+x direction by half a level-0 sub-grid (SG)
voxel to account for sampling at the voxel center. Second, we en-
large the triangle's bounding box in¡ x direction by one SG voxel
and adapt the 2D edge functions accordingly, shifting all critical
points that are on the voxel's max x face in+x direction by one SG
voxel. This ensures that the �nal voxelization boundary consists
solely of level-0 nodes (see the node marked with¤ in Fig. 7 for an
example).

After the level-1 voxelization is created, we derive a list of active
nodes sorted in Morton order, with a node's Morton code being
determined by interleaving the bits of its xyz grid position (i; j; k)
(mapping it to the binary numberkn¡ 1 jn¡ 1in¡ 1 : : :k0 j0i0). First, we
launch one thread per 32-bit block of the voxelization. Each counts
the number of set bits and writes it to a bu®er. Then a scan is run
on the bu®er to derive o®sets into the list of active level-1 nodes
(ActNodes1) as well as the list's length. Finally, again one thread
is launched per block, writing the Morton codes of the block's set
voxels into ActNodes1, starting at its designated o®set. To directly
obtain a sorted list, we use blocks of extent 4£4£2, employ the
block's index in Morton order when accessing the bu®er and the
scan result, and traverse the bits within the block in Morton order.

5.2 Octree construction

Given the list ActNodes1, we then construct the sparse octree. First,
the 8 length(ActNodes1) child nodes of the active level-1 nodes are
allocated and initialized (Nodes0), setting the x-neighbor pointers
between adjacent nodes with the same parent node. Subsequently,
by checking the Morton codes, we determine for each active level-1
node whether the next node in ActNodes1 has a di®erent level-2
parent, writing 1 if so and 0 otherwise into a bu®er Flag1, which is
then subject to an exclusive scan, yielding ParentIndex1. Note that
its last entry plus one equals the number of active level-2 nodesNa

2.
We then allocate and initialize the 8Na

2 level-1 nodes (Nodes1) sim-
ilar to the level-0 nodes. Moreover, we establish child and parent
pointers for the active level-1 nodes and their children, respectively.
Here, thei-th entry in ActNodes1 corresponds to Nodes1[j] with
j = 8 ParentIndex1[i] +

¡
ActNodes1[i] mod 8

¢
and has Nodes0[8i]

as its �rst child.

Subsequently, a list of active level-2 nodes (ActNodes2) is derived
from ActNodes1 by stripping the Morton codes of the three least
signi�cant bits and performing compaction, utilizing Flag1 and
ParentIndex1. ActNodes2 is then processed like ActNodes1 be-
fore to establish the level-2 nodes. The remaining levels are treated
analogously. In practice, we stop this process before reaching a
single root node at a level where all nodes are typically present (we
chose two levels below the root node), as this later speeds up traver-
sal. Consequently, all nodes at this top leveln must be created, and
during initialization x-neighbor pointers are established for all ad-
jacent nodes. Finally, starting at the top level, x-neighbor pointers
have to be propagated from nodes in leveli to their child nodes in
level i ¡ 1, such that adjacent level-(i ¡ 1) nodes with di®erent parent
nodes are also linked.

Note that our octree construction algorithm shares several similari-
ties to the approach by Zhou et al. [2010], like proceeding bottom-
up in a breadth-�rst fashion and using Morton ordering. The main
di®erences are in the stored payload, with Zhou et al. operating on a
given point cloud, as well as the adjacency information maintained,
where they derive pointers to all 26 neighbors of a node.

5.3 Voxelization into octree

Once the octree is created, we voxelize the input mesh into this
sparse structure, allocating one thread per triangle. As in Sec. 4,
essentially a 2D rasterization in the yz plane is performed, but in-
stead of �ipping all relevant bits in a covered voxel column, we only
update the level-0 node overlapped by the triangle and propagate
the �ip to the other a®ected voxels in the column in a later stage.
For each triangle, we �rst determine the bounding box and check
whether it overlaps any SG voxel center in the yz plane. If so, we
derive the yz range of level-0 voxels (tiles) containing overlapped
SG voxel centers. Edge functions for overlap testing are then set
up as in Sec. 4. Pursuing a two-level approach, we loop over the
tiles and check for triangle overlap. If an active tile is identi�ed, we
then loop over its 4£4 SG voxel columns, testing their centers for
overlap. In case an overlap is reported, we project the center along
the x axis onto the triangle's plane and derive the x index ¯q of the
�rst SG voxel that needs to be �ipped. The level-0 node containing
that voxel is identi�ed, and all voxels in the corresponding column
of its voxel sub-grid within the local x-index range (¯q mod 4); : : : ;3
are �ipped via an atomicxor operation.

To access a node, we initially perform a full descent in the octree
from the top level. Within a tile, x-neighbor pointers are then uti-
lized for fast navigation. When entering a new tile, we derive the
common ancestor node of the previous and the desired node from
their Morton codes. Depending on this ancestor's level, we either
ascent to this node and then descent or perform a full descent.

5.4 Hierarchical inside/outside propagation

After the voxelization into the level-0 nodes has been performed,
we hierarchically propagate bit �ips in+x direction to achieve a
solid voxelization (cf. Fig. 7). If the last bit in a level-0 node's
SG voxel column is set, all SG voxels in the same column belong-
ing to nodes in+x direction must be �ipped. We hence loop over
all (even-indexed) level-0 nodes in parallel, identifying those with
no level-0¡ x neighbor. Starting at such head nodes, we navigate
along the+x-neighbor pointers, propagating bit �ips to the next
node. Note that after that, at the end of such node strings, where no
more level-0 nodes abut, all four level-0 nodes with the same level-1
parent have all their SG voxels with local x index 3 in agreement.

We utilize this to propagate the �ip information to such level-1 par-
ent nodes. More precisely, we keep a �ip propagation �ag and an
inside �ag for each level-1 node and initialize both to zero. If a
level-1 node's child is at the end of an x-linked node string and its
SG voxels with local x index 3 are set, we set the �ip �ag. Sub-
sequently, the �ip information is propagated along x-linked level-1
node strings, starting at level-1 head nodes. If a node's �ip �ag is
set, we �ip both the �ip and the inside �ag of its+x neighbor.

This propagation to the next coarser level and then within this level
is performed analogously for the remaining levels. After that, we
propagate the inside �ag information from the top level down to
the level-0 nodes. For each node of leveli that has its inside �ag
set and has children, we �ip these child nodes' inside �ags or their
SG voxels, respectively. Note that a level-i node without children is
inside the solid object if its inside �ag is set and outside otherwise.

5.5 Coverage factor computation

Some applications prefer a scalar-valued voxelization where each
voxel stores a coverage factor (or a function of it), i.e. the percent-
age of the voxel covered by the object. These are typically derived
from a �ner-resolution binary solid voxelization. Our octree-based
representation directly supports such scenarios via a simple trans-
formation, o®ering 64£ supersampling. First, we derive coverage
factors for level-0 nodes as the fraction of set bits in their voxel
sub-grid. Subsequently, coverage factors for level-1 nodes are de-
termined by averaging the coverage factors of their children. If a
node has no children, its inside �ag de�nes the coverage factor.
This process is applied iteratively for all remaining levels.

6 Implementation

We implemented the described voxelization approaches in CUDA
and hence use the according terminology throughout this paper.
The methods take an indexed triangle set as input, provided in a
vertex and an index bu®er. At �rst, the vertices are always trans-
formed to voxel space and the voxel grid is initialized with zeroes.

Whenever processing entities in parallel where each has a varying
amount of work to perform, e.g. tiles looping over triangles or tri-
angles looping over voxels or tiles, we typically employ persistent
threads [Aila and Laine 2009], which often yielded considerable
performance improvements. For scan and compaction, we utilized
chag::pp [Billeter et al. 2009] and sorting was done with the radix
sort from CUDPP [Satish et al. 2009], processing only as many bits
as are signi�cant. Note that recent results show that considerably
faster implementations are possible for these parallel primitives; for
instance, radix sort can be sped up by a factor of about three [Mer-
rill and Grimshaw 2010].

Atomics Except for the tile-based solid voxelization, all intro-
duced approaches make heavy use of atomic memory operations
(rasterization-based voxelization techniques employ the GPU's

F

F

F F F

F F F F

F

F

F F

Propagate along x-links

Propagate to next coarser level Propagate to next finer level

F: Flip flag

*

Figure 7: Illustration of the hierarchical propagation stage.

�xed-function ROP units to set or �ip bits). Unfortunately, in cur-
rent (GT200-based) hardware they are expensive and can easily
dominate the runtime if the same memory location is touched by
multiple atomics. This, however, is hardly avoidable in conserva-
tive voxelization where a voxel is set by all triangles overlapping
it, instead of just the one covering its center in a 2D projection (as
with conventional rasterization). Some relief is provided by mak-
ing a warp access triangles with a certain stride, which increases the
chance that concurrently executed atomics refer to di®erent mem-
ory locations. This is because contiguously stored triangles are typ-
ically close in 3D space.

However, the new GF100-class GPUs o®er signi�cant improve-
ments in this respect. Furthermore, the promotion of atomics to
a core feature in OpenCL 1.1 [Khronos OpenCL Working Group
2010] suggests that these important operations will be well sup-
ported by future architectures.

7 Results

We tested our methods for multiple models and various voxel grid
sizes. All reported results were obtained on an Intel Core 2 Quad
2.83 GHz with an NVIDIA GeForce GTX 285, using isotropic vox-
els and making the grid closely encompass the whole model. Cor-
responding preliminary results for an NVIDIA GeForce GTX 480
are provided in the supplemental material, showing speed-ups of up
to 16.5 times.

Surface voxelization Table 1 lists performance data for some
example models, covering a wide range of triangle counts. Note
that the shrub model with its many branches, berries and leaves
features a high surface complexity, resulting in a large number of
overlapped voxels. We considered three di®erent realizations of our
surface voxelization methods: a simple one, which tests all vox-
els covered by a triangle's bounding box, a specialized one, which
determines the case and executes the respective specialization of
the overlap test, and one which �rst sorts the triangles by case be-
fore running case-optimized overlap tests. In general, the special-
ized version turned out to perform fastest and sorting didn't pay
o®. Interestingly, voxelization is often slower for lower-resolution
grids on the GTX 285, probably due to con�icting atomic writes,
which is especially noticeable for the Asian dragon. To somewhat
quantify the penalty, we replaced atomic operations by according
read/modify/write sequences, observing an increase in overall per-
formance by typically 1.5 to 3 times (with a maximum of 13 times).

Compared to pipeline-based conservative voxelization [Zhang et al.
2007], our data-parallel methods are consistently faster, achieving
speed-ups of 2.5 to 18.2 times. Moreover, the 6-separating vox-
elization takes only 56% to 93% of the time of our conservative

Grid Pipeline-based Our conservative voxelization 6-separating voxelization
Model

size conserv. voxel. Simple Specialized Sorted #voxels 1D/2D/3D Simple Specialized Sorted #voxels
1283 10.39 1.62 1.65 2.94 54k 10%/49%/41% 1.60 1.50 2.37 33k

Stanford bunny 2563 10.24 3.99 2.51 4.19 222k 0%/20%/79% 3.38 1.98 3.16 133k
(69,666 tris) 5123 14.80 11.97 5.96 8.40 900k 0%/ 9%/91% 12.40 4.59 6.26 535k

10243 72.64 60.96 20.69 26.75 3627k 0%/ 3%/97% 58.08 17.09 18.42 2147k
1283 188.16 27.71 25.44 30.39 102k 75%/18%/ 7% 27.13 15.58 18.31 74k

Shrub 2563 236.50 22.57 17.81 23.07 426k 57%/18%/25% 21.37 10.88 13.49 274k
(751,399 tris) 5123 336.30 36.10 25.42 28.94 1705k 46%/17%/38% 34.18 15.83 16.61 1022k

10243 804.45 118.23 63.49 65.55 6776k 22%/27%/52% 110.71 40.95 35.82 3924k
1283 116.27 12.67 11.72 16.99 39k 89%/10%/ 1% 12.54 8.91 13.51 25k

Stanford dragon 2563 142.88 9.14 8.26 16.84 162k 64%/28%/ 8% 9.09 6.60 12.84 98k
(871,414 tris) 5123 194.15 10.93 10.69 20.67 660k 24%/39%/36% 10.99 8.15 15.55 387k

10243 331.81 24.17 23.00 32.18 2664k 8%/24%/68% 23.74 16.24 23.45 1539k
1283 1261.99 234.04 227.37 192.17 22k 99%/ 1%/ 0% 230.13 153.94 187.02 16k

XYZ RGB Asian dragon 2563 1496.62 111.11 106.63 134.08 91k 97%/ 3%/ 0% 108.87 76.89 113.59 61k
(7,218,906 tris) 5123 — 73.78 68.99 130.76 374k 88%/11%/ 1% 74.55 54.70 97.29 233k

10243 — 92.48 85.26 141.11 1516k 60%/32%/ 8% 95.28 66.59 105.32 897k

Table 1: Running time (in ms) for di®erent surface voxelization methods, along with the number of resulting voxels and the encountered
percentage of cases with a 1D, 2D and 3D bounding box. For comparison, the pipeline-based approach by Zhang et al. [2007] is included.

voxelization, mainly thanks to setting 26% to 42% fewer voxels.

Solid voxelization As the results in Table 2 show, the tile-based
method becomes faster than the triangle-parallel approach if the
grid size is high or the model features many triangles. In these
cases, the overhead of assigning triangles to tiles and always test-
ing all voxel columns in a tile for overlap is o®set by the saving in
memory bandwidth and the avoidance of atomic operations. Also
note the e®ectiveness of the tile assignment stage in skipping trian-
gles that don't overlap a tile's voxel column centers. As an extreme
example, less than 0.3% of the (typically tiny) triangles are put in
the work queue for the Asian dragon and a 1283 grid.

When compared against the fastest pipeline-based version [Eise-
mann and D́ecoret 2008], at least one of our methods is faster in
half of the listed cases, which is encouraging. Considering that
solid voxelization is essentially a rasterization problem, this means
we manage to outperform the hardware rasterizer and the blend
stage for a task they were designed for. Note that as the raster-
izer processes triangles sequentially, the voxelization time can be
dominated by the �xed setup cost per triangle. Consequently, our
data-parallel approaches excel for smaller grid sizes and models
with a high triangle count.

Sparse solid voxelization Table 3 reveals that our octree-based
solid voxelization is indeed very sparse. In particular, we are able
to represent a voxelization covering a grid of size 40963 with just
216 MB (bunny model), comprising both the data and the octree
structure. This is just 2.6% of the 8 GB that would be required for
representing the grid explicitly. Note that our memory consumption
can be even further decreased by storing the x-neighbor pointers
separately and getting rid of them after the voxelization process.

With respect to our full solid voxelization methods, the running
time of the sparse approach compares favorable for the bunny
model, performing even twice as fast for a 10242 grid. By contrast,
it turns out to be more expensive for models with a higher trian-
gle count, but it additionally provides an octree representation and
can support larger grid sizes. The timing break-down indicates that
the determination of active level-1 nodes is rather costly and can
even clearly dominate the overall time (Asian dragon). Again, this
mainly can be traced back to the heavy use of atomic operations.

8 Conclusion

We have presented data-parallel algorithms for both surface and
solid voxelization. Our conservative voxelization method outper-
forms previous GPU-based approaches by up to one order of mag-

Grid Pipe- Tri- Tile-based
Model

size line parall. Ttotal Tpairs Tsort Ttiles #pairs #tris
1283 0.52 0.48 1.53 0.38 0.32 0.48 42k 64.2

Stanford 2563 0.58 1.48 2.02 0.39 0.44 0.80 81k 32.2
bunny 5123 1.43 9.27 4.72 0.49 0.78 2.88 145k 14.6

10243 8.75 74.86 18.24 0.76 1.39 14.08 301k 7.6
1283 2.69 1.45 2.51 1.09 0.32 0.47 40k 81.8

Stanford 2563 2.73 2.03 4.72 1.21 0.64 1.11 156k 84.7
dragon 5123 3.16 7.57 7.19 1.41 1.96 2.91 476k 67.3

10243 13.56 51.95 16.41 1.79 3.54 8.76 944k 34.0
1283 18.30 8.84 7.70 5.06 0.19 0.44 21k 81.5

Asian 2563 18.35 8.82 8.73 5.48 0.44 0.75 84k 89.1
dragon 5123 18.52 13.77 12.63 6.66 1.47 2.18 342k 96.3

10243 20.46 50.94 24.26 7.66 4.91 7.92 1366k 99.6

Table 2: Running time (in ms) for di®erent solid voxelization meth-
ods. The break-down for the tile-based approach considers deter-
mining the work queue (Tpairs), sorting it (Tsort), and processing the
tiles (Ttiles). Moreover, the number of tile/triangle pairs in the queue
and the average triangle list length per active tile are provided.

nitude, making it accessible to real-time applications. It employs
a new triangle/box overlap test that should also be useful in other
domains. Moreover, our algorithm easily can be adapted to a dif-
ferent overlap criterion, as we have shown by introducing a fast
6-separating surface voxelization method.

Two strategies for solid voxelization have been demonstrated. Their
underlying approaches o®er data-parallel alternatives to the hard-
ware rasterizer and compare favorable in many cases. In particular,
our tile-based method provides an e± cient solution for rasterization
tasks where larger amounts of data may be updated per fragment
(e.g. color and depth, which cannot be done with a single atomic
operation).

Finally, an octree-based sparse voxelization approach has been in-
troduced that o®ers a compact hierarchical representation and al-
lows voxelizations of resolutions not possible before on GPUs. It
basically constitutes an alternative, domain-adapted, custom ren-
dering pipeline that surpasses previous limitations, enabling the di-
rect rendering into a sparse spatial data structure. An interesting
avenue for future work is applying this strategy to other tasks where
the standard rasterization pipeline proves too restrictive.

Acknowledgements

The (original) bunny and dragon models are courtesy of the Stan-
ford 3D scanning repository; the shrub model is from the Xfrog
public plants library.

Model Stanford bunny Stanford dragon XYZ RGB Asian dragon
Binary grid size 5123 10243 20483 40963 5123 10243 20483 40963 5123 10243 20483 40963

Scalar-valued grid size 1283 2563 5123 10243 1283 2563 5123 10243 1283 2563 5123 10243

Total 4.87 9.15 25.17 93.27 14.50 23.59 37.71 100.32 47.71 102.96 143.90 178.40
Determine active level-1 nodes 1.49 1.92 3.60 12.74 8.07 10.63 9.02 17.79 27.07 80.91 101.09 77.79
Construct octree 1.01 1.74 3.99 12.36 0.97 1.52 3.37 9.43 0.90 1.35 2.37 6.04
Voxelize into octree 1.47 3.43 10.65 42.61 4.45 9.59 20.57 55.36 17.35 17.96 35.81 82.55
Propagate inside/outside 0.44 1.36 5.12 19.71 0.32 0.92 3.28 13.16 0.23 0.56 1.98 7.54
Compute coverage factor 0.12 0.37 1.37 5.36 0.10 0.28 1.02 3.98 0.07 0.18 0.60 2.29
Stored level-0 nodes 5.30% 2.71% 1.37% 0.69% 3.82% 2.00% 1.01% 0.51% 2.02% 1.10% 0.57% 0.29%
Octree size 3.2 MB 13.2 MB 53.7 MB 216 MB 2.3 MB 9.7 MB 39.6 MB 159 MB 1.2 MB 5.3 MB 22.3 MB 90.8 MB

Table 3: Running time (in ms) for our sparse solid voxelization method, including a break-down. The percentage of explicitly stored level-0
nodes provides a measure of sparseness. The given octree size accounts for both the structure and the data.

References
Abrash, M. 2009. Rasterization on Larrabee.Dr. Dobb's.

http://www.drdobbs.com/high-performance-computing/
217200602.

Aila , T., andLaine, S. 2009. Understanding the e± ciency of ray
traversal on GPUs. InProceedings of High Performance Graph-
ics 2009, 145–149.

Akenine-Möller , T., andAila , T. 2005. Conservative and tiled ras-
terization using a modi�ed triangle set-up.Journal of Graphics
Tools 10, 3, 1–8.

Akenine-Möller , T. 2001. Fast 3D triangle-box overlap testing.
Journal of Graphics Tools 6, 1, 29–33.

Billeter , M., Olsson, O.,andAssarsson, U. 2009. E± cient stream
compaction on wide SIMD many-core architectures. InProceed-
ings of High Performance Graphics 2009, 159–166.

Cohen-Or , D., andKaufman, A. 1995. Fundamentals of surface
voxelization. Graphical Models and Image Processing 57, 6,
453–461.

Dong, Z., Chen, W., Bao, H., Zhang, H., andPeng, Q. 2004. Real-
time voxelization for complex models. InProceedings of Paci�c
Graphics 2004, 43–50.

Eisemann, E., andDécoret, X. 2006. Fast scene voxelization and
applications. InProceedings of ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games 2006, 71–78.

Eisemann, E., andDécoret, X. 2008. Single-pass GPU solid vox-
elization for real-time applications. InProceedings of Graphics
Interface 2008, 73–80.

Eisenacher, C., and Loop, C. 2010. Data-parallel micropolygon
rasterization. InEurographics 2010 Short Papers, 53–56.

Fang, S.,andChen, H. 2000. Hardware accelerated voxelization.
Computers& Graphics 24, 3, 433–442.

Fatahalian, K., Luong, E., Boulos, S., Akeley, K., Mark , W. R.,
andHanrahan, P. 2009. Data-parallel rasterization of microp-
olygons with defocus and motion blur. InProceedings of High
Performance Graphics 2009, 59–68.

Haines, E. A., andWallace, J. R. 1991. Shaft culling for e± cient
ray-cast radiosity. InProceedings of Eurographics Workshop on
Rendering 1991, 122–138.

Hasselgren, J., Akenine-Möller , T., andOhlsson, L. 2005. Con-
servative rasterization. InGPU Gems 2, M. Pharr, Ed. Addison
Wesley Professional, ch. 42, 677–690.

Huang, J., Yagel, R., Filippov, V., andKurzion, Y. 1998. An accu-
rate method for voxelizing polygon meshes. InProceedings of
IEEE Symposium on Volume Visualization 1998, 119–126.

Ivson, P., Duarte, L., andCeles, W. 2009. GPU-accelerated uni-
form grid construction for ray tracing dynamic scenes. Tech.
Rep. 14/09, Pontif́�cia Universidade Católica do Rio de Janeiro.

Kalojanov, J.,andSlusallek , P. 2009. A parallel algorithm for con-
struction of uniform grids. InProceedings of High Performance
Graphics 2009, 23–28.

KhronosOpenCL Working Group. 2010. The OpenCL Speci�ca-
tion. Version: 1.1.

Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., and
Manocha, D. 2009. Fast BVH construction on GPUs.Com-
puter Graphics Forum 28, 2, 375–384.

Li, W., Fan, Z., Wei, X., and Kaufman, A. 2005. Flow simula-
tion with complex boundaries. InGPU Gems 2, M. Pharr, Ed.
Addison Wesley Professional, ch. 47, 747–764.

Liu, F., Huang, M.-C., Liu, X.-H., andWu, E.-H. 2010. FreePipe: a
programmable parallel rendering architecture for e± cient multi-
fragment e®ects. InProceedings of ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games 2010, 75–82.

Merrill , D., and Grimshaw, A. 2010. Revisiting sorting for
GPGPU stream architectures. Tech. Rep. CS2010-03, Depart-
ment of Computer Science, University of Virginia.

Nichols, G., Penmatsa, R., and Wyman, C. 2010. Interactive,
multiresolution image-space rendering for dynamic area light-
ing. Computer Graphics Forum 29, 4, 1279–1288.

Pineda, J. 1988. A parallel algorithm for polygon rasterization.
Computer Graphics (Proceedings of SIGGRAPH 88) 22, 4, 17–
20.

Reinbothe, C. K., Boubekeur, T., and Alexa, M. 2009. Hybrid
ambient occlusion. InEurographics 2009 Annex (Areas Papers),
51–57.

Satish, N., Harris , M., and Garland, M. 2009. Designing ef-
�cient sorting algorithms for manycore GPUs. InProceedings
of IEEE International Parallel& Distributed Processing Sympo-
sium 2009, 1–10.

Seiler , L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M.,
Dubey, P., Junkins, S., Lake, A., Sugerman, J., Cavin, R., Es-
pasa, R., Grochowski, E., Juan, T., and Hanrahan, P. 2008.
Larrabee: A many-core x86 architecture for visual computing.
ACM Transactions on Graphics 27, 3, 18:1–18:15.

Sun, X., Zhou, K., Stollnitz , E., Shi, J.,andGuo, B. 2008. Interac-
tive relighting of dynamic refractive objects.ACM Transactions
on Graphics 27, 3, 35:1–35:9.

Zhang, L., Chen, W., Ebert, D. S.,andPeng, Q. 2007. Conservative
voxelization.The Visual Computer 23, 9–11, 783–792.

Zhou, K., Hou, Q., Wang, R., andGuo, B. 2008. Real-time KD-
tree construction on graphics hardware.ACM Transactions on
Graphics 27, 5, 126:1–126:9.

Zhou, K., Gong, M., Huang, X., andGuo, B. 2010. Data-parallel
octrees for surface reconstruction.IEEE Transactions on Visual-
ization and Computer Graphics. To appear.

